Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.904
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 307, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656587

ABSTRACT

Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.


Subject(s)
Influenza Vaccines , Quality Control , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Influenza Vaccines/immunology , Humans , Antibodies, Viral/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Influenza, Human/immunology , Immunoassay/methods , Immunoassay/standards , Biosensing Techniques/methods , Influenza A virus/immunology
2.
Biosens Bioelectron ; 256: 116262, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38621340

ABSTRACT

Lateral flow immunoassays (LFIAs) are an essential and widely used point-of-care test for medical diagnoses. However, commercial LFIAs still have low sensitivity and specificity. Therefore, we developed an automatic ultrasensitive dual-color enhanced LFIA (DCE-LFIA) by applying an enzyme-induced tyramide signal amplification method to a double-antibody sandwich LFIA for antigen detection. The DCE-LFIA first specifically captured horseradish peroxidase (HRP)-labeled colored microspheres at the Test line, and then deposited a large amount of tyramide-modified signals under the catalytic action of HRP to achieve the color superposition. A limit of detection (LOD) of 3.9 pg/mL and a naked-eye cut-off limit of 7.8 pg/mL were achieved for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein. Additionally, in the inactivated virus detections, LOD equivalent to chemiluminescence (0.018 TCID50/mL) was obtained, and it had excellent specificity under the interference of other respiratory viruses. High sensitivity has also been achieved for detection of influenza A, influenza B, cardiac troponin I, and human chorionic gonadotrophin using this DCE-LFIA, suggesting the assay is universally applicable. To ensure the convenience and stability in practical applications, we created an automatic device. It provides a new practical option for point-of-care test immunoassays, especially ultra trace detection and at-home testing.


Subject(s)
Biosensing Techniques , COVID-19 , Limit of Detection , SARS-CoV-2 , Immunoassay/instrumentation , Immunoassay/methods , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19/virology , Horseradish Peroxidase/chemistry , Troponin I/blood , Troponin I/analysis , Point-of-Care Testing , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/analysis , Chorionic Gonadotropin/analysis , Chorionic Gonadotropin/blood , Influenza A virus/isolation & purification , Influenza A virus/immunology , Phosphoproteins
3.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38294251

ABSTRACT

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Subject(s)
Adaptive Immunity , Epithelial Cells , Ferrets , Immunity, Innate , Influenza A virus , Influenza B virus , Interferons , Nasal Mucosa , Animals , Child , Humans , Antibodies, Viral/analysis , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Ferrets/immunology , Ferrets/virology , Influenza A virus/classification , Influenza A virus/growth & development , Influenza A virus/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/classification , Influenza B virus/growth & development , Influenza B virus/immunology , Influenza Vaccines , Influenza, Human/virology , Interferons/immunology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/virology , Thymic Stromal Lymphopoietin/genetics , Thymic Stromal Lymphopoietin/immunology , Cells, Cultured
4.
Cell ; 186(25): 5486-5499.e13, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37951212

ABSTRACT

Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection. GCs co-mature B cell clones with antibody affinities spanning multiple orders of magnitude; however, each generates PCs with similar efficiencies, including weak binders. Within lineages, PC selection is not restricted to variants with the highest-affinity antibodies. Differentiation is commonly associated with proliferative expansion to produce "nodes" of identical PCs. Immunization-induced GCs generate fewer PCs but still of low- and high-antibody affinities. We propose that generating low-affinity antibody PCs reflects an evolutionary compromise to facilitate diverse serum antibody responses.


Subject(s)
Antibody Affinity , B-Lymphocytes , Germinal Center , Plasma Cells , Antibody Formation , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Lymph Nodes , Cell Line , Humans , Animals , Mice , Cricetinae , Influenza A virus/immunology , Cell Differentiation
5.
Article in English | MEDLINE | ID: mdl-37817300

ABSTRACT

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Animals , Female , Humans , Australia/epidemiology , Chickens , Drug Resistance, Viral/genetics , Drug Resistance, Viral/immunology , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/prevention & control , Oseltamivir/pharmacology , World Health Organization , Zanamivir/pharmacology , Antiviral Agents/pharmacology
6.
Nature ; 618(7965): 590-597, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258672

ABSTRACT

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Subject(s)
Antibodies, Viral , Antibody Specificity , Influenza A virus , Influenza B virus , Influenza Vaccines , Influenza, Human , Molecular Mimicry , Neuraminidase , Animals , Humans , Mice , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Antibody Specificity/immunology , Arginine/chemistry , Catalytic Domain , Hemagglutinins, Viral/immunology , Influenza A virus/classification , Influenza A virus/enzymology , Influenza A virus/immunology , Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/classification , Influenza B virus/enzymology , Influenza B virus/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/immunology , Influenza, Human/prevention & control , Neuraminidase/antagonists & inhibitors , Neuraminidase/chemistry , Neuraminidase/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Seasons , Sialic Acids/chemistry
7.
J Virol ; 97(4): e0010223, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37022164

ABSTRACT

Whether and how a local virus infection affects the hematopoietic system in the bone marrow is largely unknown, unlike with systemic infection. In this study, we showed that influenza A virus (IAV) infection leads to demand-adapted monopoiesis in the bone marrow. The beta interferon (IFN-ß) promoter stimulator 1 (IPS-1)-type I IFN-IFN-α receptor 1 (IFNAR1) axis-mediated signaling was found to induce the emergency expansion of the granulocyte-monocyte progenitor (GMP) population and upregulate the expression of the macrophage colony-stimulating factor receptor (M-CSFR) on bipotent GMPs and monocyte progenitors via the signal transducer and activator of transcription 1 (STAT1), leading to a scaled-back proportion of granulocyte progenitors. To further address the influence of demand-adapted monopoiesis on IAV-induced secondary bacterial infection, IAV-infected wild-type (WT) and Stat1-/- mice were challenged with Streptococcus pneumoniae. Compared with WT mice, Stat1-/- mice did not demonstrate demand-adapted monopoiesis, had more infiltrating granulocytes, and were able to effectively eliminate the bacterial infection. IMPORTANCE Our findings show that influenza A virus infection induces type I interferon (IFN)-mediated emergency hematopoiesis to expand the GMP population in the bone marrow. The type I IFN-STAT1 axis was identified as being involved in mediating the viral-infection-driven demand-adapted monopoiesis by upregulating M-CSFR expression in the GMP population. As secondary bacterial infections often manifest during a viral infection and can lead to severe or even fatal clinical complications, we further assessed the impact of the observed monopoiesis on bacterial clearance. Our results suggest that the resulting decrease in the proportion of granulocytes may play a role in diminishing the IAV-infected host's ability to effectively clear secondary bacterial infection. Our findings not only provide a more complete picture of the modulatory functions of type I IFN but also highlight the need for a more comprehensive understanding of potential changes in hematopoiesis during local infections to better inform clinical interventions.


Subject(s)
Interferon Type I , Orthomyxoviridae Infections , Receptor, Macrophage Colony-Stimulating Factor , STAT1 Transcription Factor , Up-Regulation , Animals , Humans , Mice , Influenza A virus/immunology , Interferon Type I/immunology , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/immunology , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , Orthomyxoviridae Infections/immunology , Hematopoiesis/immunology , Granulocyte-Macrophage Progenitor Cells/immunology , Streptococcus pneumoniae/immunology , Pneumococcal Infections/immunology
8.
Science ; 378(6622): 899-904, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36423275

ABSTRACT

Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.


Subject(s)
Influenza A virus , Influenza B virus , Orthomyxoviridae Infections , Vaccines, Combined , Vaccines, Synthetic , mRNA Vaccines , Animals , Mice , Ferrets , Nucleosides/chemistry , Nucleosides/genetics , Orthomyxoviridae Infections/prevention & control , Vaccines, Combined/genetics , Vaccines, Combined/immunology , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Influenza A virus/immunology , Influenza B virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Cross Reactions
9.
Curr Opin Immunol ; 78: 102252, 2022 10.
Article in English | MEDLINE | ID: mdl-36215931

ABSTRACT

The outbreak of the COVID-19 pandemic one year after the centennial of the 1918 influenza pandemic reaffirms the catastrophic impact respiratory viruses can have on global health and economy. A key feature of SARS-CoV-2 and influenza A viruses (IAV) is their remarkable ability to suppress or dysregulate human immune responses. Here, we summarize the growing knowledge about the interplay of SARS-CoV-2 and antiviral innate immunity, with an emphasis on the regulation of type-I or -III interferon responses that are critically implicated in COVID-19 pathogenesis. Furthermore, we draw parallels to IAV infection and discuss shared innate immune sensing mechanisms and the respective viral countermeasures.


Subject(s)
COVID-19 , Influenza, Human , Interferons , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Immunity, Innate , Influenza A virus/immunology , Influenza, Human/immunology , Influenza, Human/metabolism , Influenza, Human/virology , Interferons/immunology , Pandemics , SARS-CoV-2/immunology
10.
Proc Natl Acad Sci U S A ; 119(37): e2210321119, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36001732

ABSTRACT

Long noncoding RNAs (lncRNAs) have emerged as critical regulators of gene expression, yet their contribution to immune regulation in humans remains poorly understood. Here, we report that the primate-specific lncRNA CHROMR is induced by influenza A virus and SARS-CoV-2 infection and coordinates the expression of interferon-stimulated genes (ISGs) that execute antiviral responses. CHROMR depletion in human macrophages reduces histone acetylation at regulatory regions of ISG loci and attenuates ISG expression in response to microbial stimuli. Mechanistically, we show that CHROMR sequesters the interferon regulatory factor (IRF)-2-dependent transcriptional corepressor IRF2BP2, thereby licensing IRF-dependent signaling and transcription of the ISG network. Consequently, CHROMR expression is essential to restrict viral infection of macrophages. Our findings identify CHROMR as a key arbitrator of antiviral innate immune signaling in humans.


Subject(s)
COVID-19 , DNA-Binding Proteins , Immunity, Innate , Influenza A virus , Influenza, Human , RNA, Long Noncoding , SARS-CoV-2 , Transcription Factors , COVID-19/genetics , COVID-19/immunology , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Influenza A virus/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , SARS-CoV-2/immunology , Transcription Factors/metabolism
11.
J Mol Biol ; 434(19): 167759, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35872070

ABSTRACT

The interferon-induced transmembrane (IFITM) proteins broadly inhibit the entry of diverse pathogenic viruses, including Influenza A virus (IAV), Zika virus, HIV-1, and SARS coronaviruses by inhibiting virus-cell membrane fusion. IFITM3 was previously shown to disrupt cholesterol trafficking, but the functional relationship between IFITM3 and cholesterol remains unclear. We previously showed that inhibition of IAV entry by IFITM3 is associated with its ability to promote cellular membrane rigidity, and these activities are functionally linked by a shared requirement for the amphipathic helix (AH) found in the intramembrane domain (IMD) of IFITM3. Furthermore, it has been shown that the AH of IFITM3 alters lipid membranes in vitro in a cholesterol-dependent manner. Therefore, we aimed to elucidate the relationship between IFITM3 and cholesterol in more detail. Using a fluorescence-based in vitro binding assay, we found that a peptide derived from the AH of IFITM3 directly interacted with the cholesterol analog, NBD-cholesterol, while other regions of the IFITM3 IMD did not, and native cholesterol competed with this interaction. In addition, recombinant full-length IFITM3 protein also exhibited NBD-cholesterol binding activity. Importantly, previously characterized mutations within the AH of IFITM3 that strongly inhibit antiviral function (F63Q and F67Q) disrupted AH structure in solution, inhibited cholesterol binding in vitro, and restricted bilayer insertion in silico. Our data suggest that direct interactions with cholesterol may contribute to the inhibition of membrane fusion pore formation by IFITM3. These findings may facilitate the design of therapeutic peptides for use in broad-spectrum antiviral therapy.


Subject(s)
Cholesterol , Influenza A virus , Membrane Proteins , RNA-Binding Proteins , Cholesterol/chemistry , Humans , Influenza A virus/immunology , Membrane Proteins/chemistry , Protein Conformation, alpha-Helical , RNA-Binding Proteins/chemistry , Virus Internalization , Zika Virus/immunology
12.
J Virol ; 96(15): e0068922, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35862698

ABSTRACT

Vaccines targeting SARS-CoV-2 have been shown to be highly effective; however, the breadth against emerging variants and the longevity of protection remains unclear. Postimmunization boosting has been shown to be beneficial for disease protection, and as new variants continue to emerge, periodic (and perhaps annual) vaccination will likely be recommended. New seasonal influenza virus vaccines currently need to be developed every year due to continual antigenic drift, an undertaking made possible by a robust global vaccine production and distribution infrastructure. To create a seasonal combination vaccine targeting both influenza viruses and SARS-CoV-2 that is also amenable to frequent reformulation, we have developed an influenza A virus (IAV) genetic platform that allows the incorporation of an immunogenic domain of the SARS-CoV-2 spike (S) protein onto IAV particles. Vaccination with this combination vaccine elicited neutralizing antibodies and provided protection from lethal challenge with both pathogens in mice. This approach may allow the leveraging of established influenza vaccine infrastructure to generate a cost-effective and scalable seasonal vaccine solution for both influenza and coronaviruses. IMPORTANCE The rapid emergence of SARS-CoV-2 variants since the onset of the pandemic has highlighted the need for both periodic vaccination "boosts" and a platform that can be rapidly reformulated to manufacture new vaccines. In this work, we report an approach that can utilize current influenza vaccine manufacturing infrastructure to generate combination vaccines capable of protecting from both influenza virus- and SARS-CoV-2-induced disease. The production of a combined influenza/SARS-CoV-2 vaccine may represent a practical solution to boost immunity to these important respiratory viruses without the increased cost and administration burden of multiple independent vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Influenza A virus , Influenza Vaccines , Orthomyxoviridae Infections , SARS-CoV-2 , Vaccines, Combined , Virion , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2/classification , SARS-CoV-2/immunology , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology
13.
J Virol ; 96(9): e0035222, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35446142

ABSTRACT

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Subject(s)
Enteritis , Influenza A virus , Intestine, Small , Orthomyxoviridae Infections , Animals , Enteritis/immunology , Enteritis/physiopathology , Enteritis/virology , Humans , Immunity, Innate , Influenza A virus/immunology , Intestine, Small/cytology , Intestine, Small/virology , Lymphocytes/immunology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae Infections/virology
14.
J Immunol ; 208(10): 2319-2330, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35444027

ABSTRACT

T follicular helper (Tfh) cells support Ab responses and are a critical component of adaptive immune responses to respiratory viral infections. Tfh cells are regulated by a network of signaling pathways that are controlled, in part, by transcription factors. The aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that modulates many aspects of adaptive immunity by binding a range of small molecules. However, the contribution of AHR signaling to Tfh cell differentiation and function is not known. In this article, we report that AHR activation by three different agonists reduced the frequency of Tfh cells during primary infection of C57BL/6 mice with influenza A virus (IAV). Further, using the high-affinity and AHR-specific agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin, we show that AHR activation reduced Tfh cell differentiation and T cell-dependent B cell responses. Using conditional AHR knockout mice, we demonstrated that alterations of Tfh cells and T cell-dependent B cell responses after AHR activation required the AHR in T cells. AHR activation reduced the number of T follicular regulatory (Tfr) cells; however, the ratio of Tfr to Tfh cells was amplified. These alterations to Tfh and Tfr cells during IAV infection corresponded with differences in expression of BCL6 and FOXP3 in CD4+ T cells and required the AHR to have a functional DNA-binding domain. Overall, these findings support that the AHR modulates Tfh cells during viral infection, which has broad-reaching consequences for understanding how environmental factors contribute to variation in immune defenses against infectious pathogens, such as influenza and severe acute respiratory syndrome coronavirus.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , T Follicular Helper Cells , Animals , Cell Differentiation , Influenza A virus/immunology , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Receptors, Aryl Hydrocarbon/immunology , T Follicular Helper Cells/immunology
15.
Proc Natl Acad Sci U S A ; 119(13): e2025607119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35320040

ABSTRACT

SignificanceAlthough the need for a universal influenza vaccine has long been recognized, only a handful of candidates have been identified so far, with even fewer advancing in the clinical pipeline. The 24-amino acid ectodomain of M2 protein (M2e) has been developed over the past two decades. However, M2e-based vaccine candidates have shortcomings, including the need for several administrations and the lack of sustained antibody titers over time. We report here a vaccine targeting strategy that has the potential to confer sustained and strong protection upon a single shot of a small amount of M2e antigen. The current COVID-19 pandemic has highlighted the importance of developing versatile, powerful platforms for the rapid deployment of vaccines against any incoming threat.


Subject(s)
COVID-19 , Influenza A virus , Influenza Vaccines , Influenza, Human , Viral Matrix Proteins , Viroporin Proteins , Animals , Antibodies, Monoclonal/genetics , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/prevention & control , Dendritic Cells/immunology , Humans , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/prevention & control , Pandemics/prevention & control , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/immunology , Viroporin Proteins/immunology
16.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35271561

ABSTRACT

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccine Efficacy , Adolescent , Adult , Aged , Child , Child, Preschool , Humans , Infant , Influenza A Virus, H1N1 Subtype/immunology , Influenza B virus/immunology , Middle Aged , Population Surveillance , Seasons , United States/epidemiology , Vaccination
17.
Front Immunol ; 13: 847894, 2022.
Article in English | MEDLINE | ID: mdl-35173744

ABSTRACT

CD39/NTPDase1 has emerged as an important molecule that contributes to maintain inflammatory and coagulatory homeostasis. Various studies have hypothesized the possible role of CD39 in COVID-19 pathophysiology since no confirmatory data shed light in this regard. Therefore, we aimed to quantify CD39 expression on COVID-19 patients exploring its association with severity clinical parameters and ICU admission, while unraveling the role of purinergic signaling on thromboinflammation in COVID-19 patients. We selected a prospective cohort of patients hospitalized due to severe COVID-19 pneumonia (n=75), a historical cohort of Influenza A pneumonia patients (n=18) and sex/age-matched healthy controls (n=30). CD39 was overexpressed in COVID-19 patients' plasma and immune cell subsets and related to hypoxemia. Plasma soluble form of CD39 (sCD39) was related to length of hospital stay and independently associated with intensive care unit admission (adjusted odds ratio 1.04, 95%CI 1.0-1.08, p=0.038), with a net reclassification index of 0.229 (0.118-0.287; p=0.036). COVID-19 patients showed extracellular accumulation of adenosine nucleotides (ATP and ADP), resulting in systemic inflammation and pro-coagulant state, as a consequence of purinergic pathway dysregulation. Interestingly, we found that COVID-19 plasma caused platelet activation, which was successfully blocked by the P2Y12 receptor inhibitor, ticagrelor. Therefore, sCD39 is suggested as a promising biomarker for COVID-19 severity. As a conclusion, our study indicates that CD39 overexpression in COVID-19 patients could be indicating purinergic signaling dysregulation, which might be at the basis of COVID-19 thromboinflammation disorder.


Subject(s)
Apyrase/blood , Apyrase/metabolism , COVID-19/pathology , Receptors, Purinergic P2Y/metabolism , Thromboinflammation/pathology , Adenosine Diphosphate/analysis , Adenosine Triphosphate/analysis , Biomarkers/blood , Blood Platelets/immunology , Cell Hypoxia/physiology , Critical Care/statistics & numerical data , Female , Humans , Influenza A virus/immunology , Influenza, Human/pathology , Length of Stay , Male , Middle Aged , Platelet Activation/immunology , Prognosis , Prospective Studies , Purinergic P2Y Receptor Antagonists/pharmacology , SARS-CoV-2/immunology , Severity of Illness Index , Signal Transduction/immunology , Thromboinflammation/immunology , Ticagrelor/pharmacology
18.
Front Immunol ; 13: 823207, 2022.
Article in English | MEDLINE | ID: mdl-35185914

ABSTRACT

The immune system during pregnancy teeters between maintaining fetal tolerance and providing protection against pathogens. Due to this delicate balance, pregnant women and their offspring often have increased susceptibilities to infection. During the first year of life, infant immunity against infection is mainly mediated via passively transferred maternal antibodies. However, our understanding of the route of transfer of the maternal antibodies for conferring protection to influenza A virus (IAV) infection in offspring is incomplete. Here we have demonstrated that offspring from IAV-infected mice were significantly protected against IAV infection. This remarkable increase in survival is mediated via the elevated maternal serum IgG1. By cross-fostering, we further showed that this enhanced host resistance was only achieved in mice born to and nursed by IAV-infected mothers. Collectively, our data suggest that the prolonged protection of offspring against IAV infection requires maternal IgG1 from both the placenta and breast milk.


Subject(s)
Immunity, Maternally-Acquired , Immunoglobulin G/immunology , Milk/immunology , Orthomyxoviridae Infections/immunology , Animals , Female , Immunization, Passive , Influenza A virus/immunology , Male , Maternal-Fetal Exchange , Mice , Mice, Inbred C57BL , Placenta/immunology , Pregnancy
19.
J Virol ; 96(6): e0195921, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35107371

ABSTRACT

Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.


Subject(s)
Influenza A virus , Influenza Vaccines , Neuraminidase , Orthomyxoviridae Infections , Animals , Antibodies, Viral/immunology , Disease Models, Animal , Ferrets , Hemagglutinins/immunology , Influenza A Virus, H3N2 Subtype , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/standards , Neuraminidase/immunology , Orthomyxoviridae Infections/prevention & control , Seasons , Vaccines, Inactivated/immunology
20.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Article in English | MEDLINE | ID: mdl-34992275

ABSTRACT

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Immunity, Humoral , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Chlorocebus aethiops , Cytomegalovirus/immunology , Dogs , Female , HEK293 Cells , Humans , Immunity, Cellular , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae Infections/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...